jin's blog

  • 홈
  • 태그
  • 미디어로그
  • 위치로그
  • 방명록

멀티레이터 1

DL - Neural Net

Neural Network (신경망) 신경세포 = Neuron 이 뉴런을 이용해 layer 만든 것을 우리는 Perceptron 이라고 부른다. 퍼셉트론 자 그럼 각각 weight 들이 있고 이게 vector로 나타날거고 이것들을 합하고. bias더하고.이렇게 입력과 가중치가 곱해져서 나온 것에 activation function을 적용시킨다.sigmoid 를 자주 쓰는데, 시그모이드 함수를 이용하면back propagation에서 학습계산처리가 쉬워지므로 역전파 이용할때 전달함수로 자주 사용한다.예를 들어 하나의 신경망에 두개의 입력(x1, x2) = (0,0) 입력이 들어왔다고 가정해보자. 그리고 w1=1, w2=1, bias값은 -1.5, activation은 계단함수를 이용한다.그럼 1*0+1*0..

IT/Deep learning 2017.06.29
이전
1
다음
더보기
프로필사진

jin's blog

Endure

  • 분류 전체보기 (50)
    • IT (44)
      • Paper (23)
      • Reinforcement Learni.. (0)
      • Probability (0)
      • Deep learning (6)
      • Spark (5)
      • Python (4)
      • Computer vision (4)
      • Data Structure (1)
    • 관심사 (2)
      • 낚시 (0)
      • 피아노 (2)
      • 일상 (0)

Tag

smoothGrad, R-CNN, Fast R-CNN, intergrated gradient, RL논문, Concept vector, Never Give Up, XAI, Adversarial Examples Are Not Bugs, Deconvolution Network, Quantifying Attention Flow in Transformers, Axiomatic Attribution for Deep Networks, Regularizing Trajectory Optimization with Denoising Autoencoders, vision transformer, CAV, TCAV, Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors, They Are Features, Paper리뷰, Learning Directed Exploration Strategies,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바